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1 INTRODUCTION

SRI International (SRI) is pleased to submit this final technical report for the Robust
Transfiguring Network Protocols (RTNP) Project, sponsored by Rome Laboratory
under Contract No. F30602-92-C-0052.

1.1 OBJECTIVE

U.S. Air Force (USAF) C3I networks must be able to function efficiently despite
very stressful conditions that may include a highly dynamic topology due to mobility
and jamming, sophisticated electronic countermeasures (ECM) attacks, and unpre-
dictable, dynamic traffic demand. Programs such as the Evaluation and Development
of Multimedia Networks in Dynamic Stress (EDMUNDS) program [Hight et al. 1993]
have produced network protocols that permit effective service in such stressful, dy-
namic environments. However, each such protocol was designed to operate effectively
under a particular model of the network environment. It is not sufficient to select a
single protocol that achieves optimal performance in the most severe possible envi-
ronment, since this selection may result in poor performance in other environments.
Therefore, different protocols are required under different environmental conditions.

The purpose of RTNP was therefore to develop methods to recognize or predict
adverse network conditions (having either malicious or benign causes) that may result
in poor protocol performance, and to dynamically select the most appropriate protocol
or protocol parameters in response to the recognized conditions.

Unfortunately, in an operational mode, knowledge of the environment is likely
to be uncertain, incomplete, and erroneous, especially when the environment changes
rapidly, and particularly when the changes are due to sophisticated ECM attacks.
For example, it may be difficult to ascertain the jamming characteristics or the so-
phistication of the adversary.

Therefore, to solve the above problem, two subproblems need to be solved:

(1) to recognize environmental conditions that cause a given protocol to fail (we define
a protocol as failing if another known protocol would perform significantly better in
the same situation); and (2) to decide which protocol or protocol parameter values
to use based on the perceived environment.
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Figure 1.1. RTNP Concept

1.2 METHOD OF APPROACH

The RTNP solution to this problem is to combine robust tunable protocols with
methods that continually gather network measurements, analyze those measurements
to recognize environmental conditions, and dynamically select the most appropriate
protocol and/or protocol parameter values to optimize performance in the perceived
environment. This solution combines conventional network protocols for low-level
network control with AI methods for environment estimation and high-level network
control.

The general concept of RTNP is shown in Figure 1.1. The environment estima-
tor (EE) obtains network state information and updates the environment estimate
vector (EEV), which represents its view of the environment. The high-level network
controller (HLNC) reads the EEV (and in some cases performance feedback infor-
mation), and selects the parameters that determine which member of the protocol
family to use.

The RTNP project is divided into four tasks. The roles and interdependence of
these four tasks can be summarized as follows (see Figure 1.2):

Task 1—Exploration of Protocol Failures. Using simulations, gain an un-
derstanding of which protocols (or protocol parameters) should be selected if the
environment were known exactly, and how the performance degrades if the wrong
protocol is chosen for a given environment. Determine which environmental charac-
teristics have the most effect on the protocol selection; these will be the characteristics
that need to be estimated using knowledge-based techniques in Task 2.

Task 2—Artificial Intelligence Environment Estimation. Design a knowledge-

based system that will maintain and update an estimate of the environment. The
environment estimate vector will provide possibly uncertain and incomplete infor-
mation about a carefully selected set of environmental characteristics that have the
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Figure 1.2. RTNP Task and Program Relationships

potential of causing protocol failures.

Task 3—High-Level Network Control. Design the HLNC, which will read
the EEV and select the appropriate protocol or protocol parameters. The HLNC
performs the function F:X — P, where X is the space of EEVs, P is the space of
protocol parameter vectors, and F(x) is the vector consisting of the chosen parameters
for EEV x.

Task 4—Rome Laboratory Support. Provide support to RL to assist in
in-house testing and demonstration of the protocol technology developed during the
proposed effort. This support will include the installation of network emulation ca-
pabilities, demonstration experiment scripts, and on-site support.

1.3 SUMMARY OF ACCOMPLISHMENTS

In RTNP we have developed a protocol that uses two artificial intelligence (AI) meth-
ods, neural networks and evidential reasoning, to recognize and predict adverse net-
work conditions, and that uses fuzzy logic to dynamically control the parameters of

a tunable routing protocol in response to the perceived environment. The Secure
Tactical Internet Protocol 3 (STIP3) [Hight et al. 1993] developed in EDMUNDS
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was selected as the routing protocol, because of its proven effectiveness and its large
number of tunable parameters. However, the methods developed under RTNP can
be adapted to any tunable protocol.

Examples of the tunable protocol parameters are (1) a parameter that controls
the degree to which traffic is spread over multiple paths, (2) a link bias parameter
that, when large, increases stability by forcing traffic over minimum-hop paths, and
(3) a parameter that determines how often routing updates are sent. Examples of
measurements used to recognize adverse conditions are (1) congestion, (2) probability
of a successful transmission on a link, (3) jamming characteristics, and (4) degree of
routing oscillations.

The main accomplishments of RTNP can be summarized as follows:

Neural Network Methods for Network State Prediction. Neural network
methods were developed for predicting link-states and congestion, based on network
measurements and estimates. These methods were shown in simulations to predict
link states and queuing delay much more accurately than other methods.

Fuzzy Logic HLNC. An HLNC based on fuzzy logic was developed that dy-
namically modifies the STIP3 protocol parameters in response to changes in network
measurements and estimates. Fuzzy logic rules were found that resulted in better
performance than STIP3 in some scenarios. However, we found it difficult to find
fuzzy rules that consistently perform better than STIP3 in all scenarios.

The Application of Gister to Environment Estimation. Gister is an arti-
ficial intelligence tool developed at SRI that applies the technique of evidential reason-
ing to draw conclusions about hypotheses, given evidence from different sources. An
EE module based on Gister was designed that estimates environment characteristics
based on network measurements. In addition, we extended Gister (which normally
produces LISP code) to produce C code, so that the code can be integrated into the
RTNP software. The effectiveness of Gister depends heavily on the problem being
solved and on the design of the Gister system. Our testing of Gister was limited, but
simulations showed neural networks to be superior to Gister for predicting link states.

RTNP Architecture and Protocol. We developed the RTNP architecture
and protocol, which integrates neural networks, evidential reasoning, and fuzzy logic,
to recognize and predict adverse network conditions and dynamically select the most
appropriate parameter values for the underlying network protocol (STIP3).

The RTNP simulation software was developed by modifying and augmenting
the software already developed in EDMUNDS for simulating STIP3. Both the STIP3
and RTNP software are written in C++, using the Network Algorithm Programmer’s
Interface (NAPI+), also developed in EDMUNDS. The RTNP software was designed
to be flexible, to allow future experimentation. For example, the user can

e Specify the neural network connection weights in an input file.
¢ Specify the fuzzy rules for the HLNC in an input file.
e Specify that the EE and HLNC not be used, so that RTNP becomes STIP3.
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e Specify the Gister analysis, either using the Gister tool or by writing a new C
function.

¢ Replace STIP3 with another underlying network protocol.

1.4 ORGANIZATION OF REPORT

The remainder of this report is organized as follows. Section 2 provides an overview
of the RTNP protocol, Section 3 gives an overview of the RTNP simulation software,
Section 4 summarizes the simulation test results, and Section 5 presents conclusions.
References are listed in Section 6.

This report is intentionally concise. Additional details on the material summa-
rized in this report can be found in the following documents:

o Software Design Document for the Robust Transfiguring Network Protocol [Khan,
Ogier, and Wong 1995a], which specifies the RTNP protocol

o Software Test Report for the Robust Transfiguring Network Protocol [Khan,
Ogier, and Wong 1995b], which describes the tests performed for RTNP and
presents their results

e Software User’s Manual for the Robust Transfiguring Network Protocol [Wong,
Ogier, and Khan 1995], which gives the procedures for using the RTNP simu-
lation software.




2 OVERVIEW OF RTNP

This section presents an overview of the RTNP protocol. A detailed description
of RTNP can be found in the Software Design Document [Khan, Ogier, and Wong
1995a]. This section discusses the protocol independently of the software that we used
to simulate it. A discussion of the RTNP simulation software is given in Section 3,
and instructions on using the software are given in the Software User’s Manual [Wong,
Ogier, and Khan 1995].

The architecture for RTNP at a single network node is shown in Figure 2.1. The
protocol is identical at each node. The underlying network protocol is STIP3, which
was developed in the EDMUNDS project. We present a brief overview of STIP3
below. A detailed description of STIP3 is given in Hight et al. [1993]. RTNP was
developed by adding new modules for environment estimation and high-level network
control to STIP3. These new modules allow various STIP3 control parameters to be
controlled dynamically in response to changes in the perceived environment.

RTNP is a distributed protocol; that is, the processing is done at each node
rather than by a centralized processor, and information is exchanged between neigh-
boring nodes. A distributed architecture was chosen for the following reasons:

e A distributed architecture is more survivable than a centralized one.

o A centralized architecture requires a large amount of bandwidth to transport
network-state information from all nodes to the central processor.

o A centralized architecture results in slower response to environment changes,
because of the communication delays between the nodes and the central pro-
Cessor.

Referring to Figure 2.1, the measurements module collects local measurements
and estimates received by neighbors, and forwards them to the two EE modules and
to the HLNC module. The EE modules use these measurements to estimate relevant
environment characteristics, such as the amount of jamming. These estimates are then
forwarded to the HLNC, which uses them to control the STIP3 control parameters
based on fuzzy logic. Some of these estimates—in particular, predictions for link-state
probabilities and queuing delays—are also forwarded directly to the STIP3 module,
which may use them in place of the less accurate estimates normally used by STIP3
for computing the routing variables.




Gister Environment
Measurements Module " Estimator Module

Neural-Network Environment HLNC
Estimator Module Module

b

STIP3 Module

Figure 2.1. RTNP Modules and Interfaces

The EE is divided into two modules: the Gister EE Module and the Neural-
Network EE Module. Gister is an Al software tool developed at SRI that applies
the technique of evidential reasoning to draw conclusions about hypotheses, given
evidence from different sources. As discussed below, neural networks and evidential
reasoning have different advantages and disadvantages, and therefore complement
each other. The RTNP architecture is flexible in that a given implementation of RTNP
may use either, both, or neither of these two modules. This allows, for example, the
two methods to be compared.

The architecture is also flexible in that a given implementation of RTNP may or
may not use the HLNC. If the HLNC and both EE modules are omitted, then RTNP
becomes STIP3. This allows RTNP to be compared with STIP3 without requiring
separate software for STIP3. In addition, it may be desirable to use only STIP3 in
networks that have a predictable environment.

The fuzzy rules used by the HLNC, the neural-network connection weights used
by the neural-network EE, and the Gister analysis, can be specified by the user. This
flexibility allows the fuzzy rules and neural networks to be tailored to a particular
network. It also allows different fuzzy rules, neural networks, and Gister analyses to
be evaluated and compared. The neural-network connection weights are obtained by
training the neural network off-line, as described in the the Software User’s Manual
[Wong, Ogier, and Khan 1995].

The following subsections discuss the functions of the RTNP modules.
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2.1 STIP3 MODULE

This subsection presents a brief overview of the STIP3 protocol. STIP3 is a network
protocol that performs dynamic multipath routing, link scheduling, and flow control.
It is a very flexible protocol that has several control parameters that can be tuned
to greatly change its character in order to adapt to changes in the environment.
STIP3 was designed for highly dynamic networks that can suffer frequent changes
in topology and link capacities due to mobility, interference, and jamming. It was
designed for point-to-point links, but can be adapted to multiple access networks.
STIP3 was shown in simulations to perform much better than previously existing
routing protocols based on shortest paths and local queuing delay [Hight et al. 1993].

STIP3 is a distributed, distance-vector algorithm. Each node ¢ maintains and
updates the distance variables e(¢,d) for each destination d, where (7, d) represents
the expected time for the last packet at node 7 and destined for node d to arrive at
node d. The distance variables e(i,d) are time smoothed and are sent to neighbors
only if they change by at least some threshold amount. This time smoothing results
in the distance information being successively averaged as it propagates across the
network, so that the farther it is propagated, the more it is averaged.

STIP3 uses destination queues instead of link queues, so that the routing decision
can be made at the last possible moment. In STIP3, each node computes link flows
f(1,d) for each link [ and destination d, which determine the percentage of packets
with destination d that are to be routed on link I. These flows are computed so as to
minimize the sum of €'(i,d) over d, where €'(z,d) is the unsmoothed expected delay
to d. (Alternatively, the sum of the squared delays can be minimized for improved
fairness.) This flow optimization takes into account the expected delays received
from neighbors, the capacities of the outgoing links, the estimated reliability of each
outgoing link, the current local queue sizes, and measurements of the arrival traffic.
These values are used to predict the near-future average queuing delay, which is used
to compute €'(z, d).

The receiver of a successful transmission sends an acknowledgment (ack) to the
transmitter; if no ack is received within a timeout window, the packet is queued for
retransmission. Since STIP3 uses destination queues instead of link queues, a packet
need not be retransmitted on the same link on which it was previously transmit-
ted. This is desirable since the previous link may have deteriorated since the last
transmission.

The reliability p() of each link (i.e., the probability that a packet transmission
on the link will be successful) is updated dynamically based on the history of trans-
missions and acks. This algorithm exploits the following inherent asymmetry: if an
ack has been received for a transmission, then we know the transmission was success-
ful, but if an ack has not yet been received, we do not know whether the transmission
was successful. Based on this asymmetry, the algorithm computes two different esti-
mates for p(l), one of which is a lower bound, and then sets p() to the maximum of
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these estimates. This technique results in faster response to a link coming up than the
simple averaging method used in STIP2. In addition, STIP3 adjusts the smoothing
constant for p(I) depending on the rate of link dynamics, since the optimal smoothing
constant was found to depend greatly on this rate.

To minimize routing loops that could be caused by network dynamics, STIP3
uses a distributed algorithm to compute and update a directed acyclic graph, DAG(d),
for each destination d, based on the expected delays to that destination. Packets with
destination d are limited to links in DAG(d), and each node considers only links in
the current DAG(d) when computing the flows f(I, d).

STIP3 provides the option of using a simple flow control mechanism that stops
admitting traffic destined for node d if €(z, d) exceeds a given threshold.

STIP3 employs a token-based link-scheduling algorithm that determines the next
packet to send on an available link. This scheduling algorithm has the following at-
tributes: (1) traffic of a given destination is guaranteed to be divided among outgoing
links in proportion to the computed flows f(I,d); (2) traffic burstiness is taken into
consideration, unlike the weighted round robin method; (3) destination queues are
used, so that the routing decision can be made at the last possible moment; and (4)
multiple priorities are supported.

In summary, STIP3 has the following attributes:

¢ Quickly finds alternate routes in response to jamming and congestion.
e Allocates link resources optimally, given the available information.

e Uses a new updating method that successively averages delay information as it
is propagated.

Works effectively for arbitrarily fast link dynamics.

Queues packets at nodes, not links, so that routing decisions can be based on
the most recent state and delay information for each link.

Employs directed acyclic graphs to reduce routing loops.
Some limitations of STIP3 are as follows:

o Requires a large amount of processing per packet, limiting the number of packets
that can be processed per second. This limitation can be overcome by using
larger packets.

e Requires a large amount of processing to compute flows. This limitation can
be overcome by using a more efficient flow-computation algorithm and/or com-
puting flows less frequently.

e Employs datagram routing, and therefore does not preserve packet sequence.

9



e May suffer from transient routing loops, since it is based on distance vectors.
This limitation can be overcome at the expense of increased message overhead
by distributing link-state information.

o Does not reserve bandwidth or provide quality-of-service guarantees.

Interfaces Between STIP3 and the Other Modules. Some measurements
already computed by STIP3, such as link-state probabilities, link jamming rates, and
queue sizes, are used by the measurements module to compute other measurements.
In the other direction, the link-state probabilities and queuing delays computed by
the neural-network EE can optionally be used by STIP3 in place of the estimates
normally used by STIP3 for computing the routing flows.

Any of the STIP3 control parameters can be controlled dynamically by the
HLNC, based on the network measurements and the estimates computed by the two
EE modules. Some of the parameters we controlled in experiments are as follows:

o spread. Determines the degree to which traffic of each destination is spread over
multiple paths.

o link_bias. A constant which is added to the delay of each link. When link_bias
is very large, STIP3 sends traffic alongs minimum-hop paths.

e epsilon. Determines the amount that a distance variable e(,d) must change
before the new value is sent to neighbors.

o alpha_inc. Determines the amount of time smoothing for the distance variables

e(t,d).

o short_update_period. Determines the frequency at which update messages are
sent to neighbors.

2.2 MEASUREMENTS MODULE

The Measurements Module collects and computes measurements that are used by the
EE and HLNC modules. Some of these collected measurements are already computed
by STIP3, and are used to compute other measurements or are forwarded to the
other modules. Such measurements computed by STIP3 include the sizes ¢(d) of the
destination queues, the flows f(I,d) on the outgoing links, the estimated link-state
probabilities p(l) and jamming rates A([) for the outgoing links, counts of the arrival
traffic, and a history of transmissions and acknowledgments.

Some measurements are received from neighboring nodes. These measurements,
ete_jam.amt nbr(l,d) and ete_jam_rate_nbr(l,d), measure the amount and rate of
end-to-end jamming from each neighbor (corresponding to link I) to each destina-
tion d. They are used by the End-to-End Jamming Estimator Module to compute
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ete_jam_amt(d) and ete_jam_rate(d), which estimate the amount (degree) of jam-
ming and the pulse rate of jamming that is present on the paths to each destination.
Several measurements are computed by the Measurements Module for use by
the neural-network EE for predicting the link-state probabilities and queuing delays.
These are discussed below in the subsection for the Neural-Network EE Module.
Several measurements are computed by the Measurements Module for use by the
HLNC Module; these are discussed below in the subsection for the HLNC Module.

2.3 NEURAL-NETWORK EE MODULE

As discussed above, RTNP has two EE modules, one based on neural networks and
the other based on Gister, since these two methods complement each other. Neural
networks have the following advantages and disadvantages, as compared to Gister:

e Advantages

— They are computationally faster than Gister.

— They can learn any input-output function to arbitrary precision, given a
large enough training set.

— Unlike Gister, they do not require different sources of information to be
independent.

e Disadvantages

— They are difficult to analyze.

— Their success depends on the training set being general enough.

The Neural-Network EE Module consists of the following submodules (as shown
in Figure 2.2), the Link-State Predictor Module, the Queuing-Delay Predictor Mod-
ule, and the End-to-End Jamming Estimator Module. The data output from these
modules are estimates of the environment and may be used in the HLNC Module to
control protocol parameters.

2.3.1 Link-State Predictor Module

This module is invoked at each epoch, for each link, to predict the probability that a
packet transmitted on the link during the next epoch will be successful. We refer to
this probability as the link-state probability.

This module implements an off-line-trained, feed-forward neural network, with
an input layer, an optional hidden layer of neurons, and an output neuron {Haykin
1994; Masters 1993]. Figure 2.3 shows a feed-forward neural network with a sin-
gle hidden layer. The output of the neural network gives the predicted link-state
probability.

11
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Figure 2.2. Neural-Network EE Submodules

For a given set of inputs uy, ..., ur, the output of the nerual network is given by

J
Y = gout(z WJV_; + bout) (21)

J=1

where V;, j = 1,...,J, is the output of the jth hidden neuron, given by

I
Vi = g(D_ wijui + ;) . (2.2)
=1

The function g(z) is the activation function for the hidden neurons, which we take
to be tanh(z), the hyperbolic tangent function. The tanh(z) function is a sigmoid
function that approaches +1 as z goes to oo and —1 as z goes to —oo, and crosses
zero at z = 0. The function g, () is the activation function for the output neuron,
which we take to be either tanh(z) or the identity function g(z) = x. The W; are the
connection weights from the hidden neurons to the output neuron, the w;; are those
from the inputs to the hidden neurons, and b,,: and b; are the biases for the output
neuron and hidden neurons, respectively.

The neural network is trained off-line with respect to a given training set, which
consists of a representative set of input-output pairs. A procedure for training the
neural network is provided in the Software User’s Manual [Wong, Ogier, and Khan
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Output

Figure 2.3. Feed-Forward Neural Network

1995]. This training gives the connection weights w;; and W, and the biases b,,; and
b;, which are provided to RTNP via an input file.

The following variables, from the Measurements Module, can serve as inputs to

the neural network, where : = 0,1,2,..., f“—d"f}f—e]

A(!), the measured jamming rate on link /.

zmitted(l,7) and acked(l,7), the number of packets transmitted on link ! dur-
ing the sth previous epoch, and the number of these packets that have been
acknowledged (acked).

ackdelay_cdf(l,7), the cumulative probability distribution function of the ack
delay, in epochs.

avg._ackdelay(l), the average ack delay on link .

support(l,i) = acked(l,i)/zmitted(l, ), which represents a lower bound on the
probability of success on link ! during the ith previous epoch.

plausibility(i,1) = 1 — [(1 — support(l,i))ackdelay_cdf(l,1)], which represents an
upper bound on the same probability.

avg-success.rate(l,1) and avg_success_rate(l,2), exponentially decayed time av-
erages, with two different time constants, of the fraction of transmissions that
have been acked. (Using exponential time averages, we give more importance
to recent transmissions.)

13




2.3.2 Queuing-Delay Predictor Module

The Queuing-Delay Predictor Module is invoked at each epoch processing instant, to
predict the queuing delay at each queue averaged over the near future, i.e., over the
next qd_future epochs, where gd_future is a parameter. (There is a separate queue
at each node for each destination.)

As with the Link-State Predictor Module, this module implements a feed-forward
neural network that is trained off-line and that has an input layer, an optional hidden
layer of neurons, and an output neuron. The output of the neural network gives the
predicted queuing delay.

The neural network is trained off-line with respect to a given training set, which
consists of a representative set of input-output pairs. This training gives the neural
network connection weights and biases, which are provided to RTNP via an input
file.

The following variables, from the Measurements Module, can serve as inputs to
the neural network:

e ¢(d), the instantaneous queuing delay at the queue for destination d.

e arr(d,i), i = 0,1,2,...,maz history — 1, the number of bits of destination-d
traffic that arrived during the sth previous epoch.

e avg_arr(d,1), avg-arr(d,2) and avg_arr(d,3), exponentially decayed time av-
erages, using short-, medium-, and long-term time constants, respectively, of

arr(d,?).
o burstiness(d), a measure of the burstiness of the arrival traffic for destination d.

e avg \(d), the average jamming rate of the outgoing links, weighted by the link
flows f(l,d) for destination d.

o total_f(;i), the sum of the link flows f(l,d) over all outgoing links I.

e p(d,1) and p(d,2), averages over the outgoing links (weighted by the link flows
for destination d) of medium- and long-term exponential time averages of the
predicted link-state probabilities.

2.3.3 End-to-End Jamming Estimator Module

The End-to-End Jamming Estimator Module is called at each epoch processing in-
stant to update the estimate of the amount and rate of end-to-end jamming to each
destination. These estimates may be used by the HLNC Module for controlling the
STIP3 protocol parameters.

The amount of end-to-end jamming to destination d, ete_jam_amt(d), is a num-
ber between 0 and 1, where 0 represents no jamming and 1 represents perfect jamming

14




(i.e., no packets can reach the destination). The jamming rate A({) for a link repre-
sents the number of jamming pulses per second, and the end-to-end jamming rate for
destination d, ete_jam._rate(d), is an estimate of the average jamming rate on paths
leading to d. ‘

Depending on the value of the parameter add_jam _param_to_update, nodes may
periodically receive estimates, via update packets, of the amount and rate of end-to-
end jamming from each neighbor to each destination. The latest such estimates are
stored in the variables ete_jam_amt_nbr(l,d) and ete_jam_rate_nbr(l,d). These variables
are initialized to 0 and are updated in the measurements module if and when new
values for the variables arrive in update packets.

Dynamic programming (Bellman-Ford-like) equations are used to update the
variables ete_jam_amt(d) and ete_jam_rate(d), based on the local jamming measure-
ments avg.jam.amt(l) and A(l) and the estimates received from neighbors. The
variables ete_jam_amt(d) and ete_jam_rate(d) are also time smoothed. If the pa-
rameter add_jam_param_to_update is equal to 1, then these variables are sent to
neighbors via update packets when their quantized versions change. In addition,
these variables are averaged over all d to give summaries of the amount and rate of
jamming for the node, denoted ete_jamming_amt and ete_jamming_rate. The vari-
able ete_jamming _period, defined as 1/ete_jamming_rate, is also computed, for use
by the HLNC Module.

The End-to-End Jamming Estimator Module has the following input variables:

ete_jam_amt_nbr(l,d) and ete_jam_rate_nbr(l,d)

e avg_jam_amt(l)

o A(])

e f(l,d), the optimal effective flow on link ! for packets for destination d

e p(l), the predicted link-state-probability for link ! over the next epoch.

The module provides the following output variables:

ete_jam_amt(d)
o cte_jam_rate(d)
o cte_jammang_amt

o cte_jamming_period.
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Figure 2.4. Gister EE Submodules

2.4 GISTER EE MODULE

The Gister EE Module uses Gister analysis (which is based on evidential reasoning)
to obtain an estimate of the environment. The module consists of three submodules:
the Measurements-to-Mass Converter Module, the Gister Analysis Module, and the
Gister Output Summarizer Module, as shown in Figure 2.4. These modules are
discussed briefly in the following subsections. Appendix B of the Software Design
Document [Khan, Ogier, and Wong 1995a] contains a review of Gister and evidential
reasoning. A more complete description of Gister can be found in the Gister manual
[Lowrance 1993].

2.4.1 Measurements-to-Mass Converter Module

The Measurements-to-Mass Converter Module is invoked at each epoch processing
instant to convert measurements from the measurements module into masses needed
as inputs for Gister analysis. (In evidential reasoning, a mass is a degree of belief
assigned to a proposition.)

Each measurement that is input to this module is associated with a Gister frame
that contains a number of propositions associated with the measurement. For exam-
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ple, if the measurement is the amount of jamming, then the propositions of the
associated frame might be small, medium, and large.

In addition, each measurement is associated with a fuzzy domain (see Subsec-
tion 2.5), which contains a fuzzy set for each proposition in the corresponding Gister
frame. Thus, there is a one-to-one correspondence between the propositions in a
frame and the fuzzy sets in the corresponding fuzzy domain. The fuzzy set for a
given measurement-proposition pair is used to describe the mapping from the mea-
surement to the proposition. This association between measurements, Gister frames,
and fuzzy sets is defined by the user and placed in an input file.

The mass for a particular proposition in a frame is set as equal to the mem-
bership value of the measurement in the corresponding fuzzy set. The names of
the input frames, the names of the input propositions, and the associated masses
are stored in the frame-oriented data structure analysis_input, using the function
init_prop_mass(). This function and analysis_input are discussed in Subsection 2.4.2.

2.4.2 Gister Analysis Module

The Gister Analysis Module is invoked at each epoch processing instant. It performs
evidential reasoning analysis to draw conclusions about the environment. For flex-
ibility, RTNP allows the contents of the Gister Analysis Module to be specified by
the user. This module can be created either by writing a C function or by using the
LISP-based Gister analysis tool.

The input to this module is the frame-oriented data structure analysis_znput,
which gives the masses of the propositions of the input frames of discernment (FODs).
The Gister Analysis Module uses analysistnput to perform evidential reasoning, and
draws conclusions about the environment in terms of the support and plausibility of
various output propositions. These support and plausibility measures are placed in
the data structure analysis_output, and are used by the Gister Output Summarizer
Module to compute summarized estimates of the network environment.

Both analysis_input and analysis_output share the same data structure: both are
arrays of elements, one for each frame, with each element having two fields. The
first field contains the name of the input frame, and the second contains a pointer
to a mass function that includes a list of input propositions and their associated
mass, support, and plausibility (proposition-mass pairs). The support and the plau-
sibility fields for analysis_input are assigned the value -1. Once all the elements of
analysis_input are properly loaded, the Gister Analysis Module is called. For ease of
coding, analysis_input can be loaded via the function call init_prop_mass(). The
arguments required for init_prop_mass() are the name of an input frame, a pointer
to an input proposition, and its associated mass.

The output of the Gister Analysis Module is stored in the data structure analy-
sis_output. This data structure can be accessed via calls to the functions get_prop_support()
and get_prop_plausibility(), which return the support and plausibility, respectively,

17




of the given output proposition. The arguments required for these functions are the
name of the output frame and a pointer to an output proposition.

2.4.3 Gister Output Summarizer Module

The Gister Output Summarizer Module is invoked at each epoch processing instant to
summarize the support and plausibility measures for various propositions, obtained
from the Gister Analysis Module, into a form that can be used by the HLNC Module
to compute various protocol parameters. Flexibility is provided to output the support
and plausibility measures unchanged, since they may also be used as input to the
HLNC Module.

This module uses output._fuzzy_set and output_fuzzy_domain objects, as described
in Subsection 2.5. The definitions of these objects are read from a file and stored as
data structures before the simulation. Each output_fuzzy_domain is associated with a
Gister frame whose name is also read in from the file. The number of propositions in a
frame is equal to the number of fuzzy sets in the associated fuzzy domain. Thus, there
is a one-to-one correspondence between a proposition in a frame and the corresponding
fuzzy set in the associated fuzzy domain object. A new data structure is populated
with Gister output frame names and the corresponding output_fuzzy.domain objects.
This data structure exhibits one-to-one correspondence between a Gister frame name
and its corresponding fuzzy domain object.

This module summarizes the support and plausibility of the various propositions
in each output frame into a single number, which is taken to be an environment
estimate. Two approaches are devised. In one approach, the summarization of an
output frame is represented by the weighted average of the centroids of the fuzzy
sets in the associated output_fuzzy domain object, weighted by the supports of the
corresponding propositions. In the other approach, the summarization of an output
frame is represented by the weighted average of the centroids of the fuzzy sets in the
associated output_fuzzy domain object, weighted by the average of the support and
plausibility of the corresponding propositions.

2.5 FUZZY LOGIC HLNC MODULE

The Fuzzy Logic HLNC Module is invoked at each epoch processing instant to dy-
namically control one or more STIP3 control parameters in response to changes in
measurements and estimates of the environment. The output of this module can be
any subset of the STIP3 control parameters. In experiments, we used the STIP3
parameters listed in Subsection 2.1.

Theoretically, the input variables of this module can be any measurements or
estimates from the Neural-Network EE Module, the Gister EE Module, and/or the
Measurements Module. However, for experimentation, we selected the following mea-
surements and estimates as possible inputs:
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o cte_jamming_amt, an estimate of the amount of end-to-end jamming averaged
over all destinations (from the End-to-End Jamming Estimator Module).

o ete_jamming._period, an estimate of the period (1/rate) of end-to-end jam-
ming averaged over all destinations (from the End-to-End Jamming Estimator

Module).
e congestion, a measurement of local congestion (from the Measurements Module).

e oscillation period = 1/o0sc_degree, where osc.degree is a measure of the max-
imum frequency at which the primary link for some destination is changing
(from the Measurements Module).

o traffic_burstiness, a measurement of the burstiness of the local arrival traffic
(from the Measurements Module).

o jamming_traffic_correlation, a measurement of the correlation between the amount
of jamming and the amount of flow on the outgoing links (from the Measure-
ments Module).

The Fuzzy Logic HLNC Module follows an objected-oriented design. Types of
objects in the HLNC include input_fuzzy_set, output_fuzzy.set, input_fuzzy_domain,
output_fuzzy domain, and fuzzy rule. Important functions in the Fuzzy Logic
HLNC Module include the parsing of fuzzy sets, fuzzy domains, and fuzzy rules;
the evaluation of fuzzy membership values; and the derivation of output variable
values. These objects and functions are discussed in this section. In order to allow
experimentation with different fuzzy rules, the user can define the above objects in
an input file.

input_fuzzy_set. This object uses five floating-point numbers to describe the
shape of an input fuzzy set. The fuzzy set has a trapezoid shape, with the first four
floating-point numbers giving the = coordinates of the lower left, upper left, upper
right, and lower right corners of the trapezoid, respectively, and the last floating-
point number giving the y coordinate of the top of the trapezoid. The y coordinate
of the base of the trapezoid is assumed to be 0.0. Objects of type input_fuzzy_set
are defined only within objects of type input_fuzzy.domain. An example of an
input_fuzzy_set is given in Figure 2.5 and is defined as follows:

small 0.0 2.0 6.0 8.0 1.0

output_fuzzy_set. This object uses two floating-point values to describe a fuzzy
set for an output variable. These two floating-point values specify the centroid and the
area of the fuzzy set. (The exact shape of the output fuzzy set need not be given, since
we use the centroid method for defuzzification.) Objects of type output_fuzzy_set
are defined only within objects of type output_fuzzy_domain. An example of an
output_fuzzy_set is
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1.0 small

0.0 20 4.0 6.0 8.0

Figure 2.5. Example of an Input Fuzzy Set

large 0.75 5.0

input_fuzzy domain. This object defines a fuzzy domain for an input vari-
able. The definition of an input_fuzzy.domain includes the associated input variable
name, the range of the domain, and a group of input_fuzzy_sets. An example of an
input_fuzzy_domain is

input_fuzzy _domain jamming rate_domain jam_rate 0.0 100.0

(small 0.0 2.0 6.0 8.0 1.0 large 0.0 10.0 15.0 20.0 5.0)

output_fuzzy_domain. This object defines a domain for an output variable. The
definition of an output_fuzzy_domain includes the associated output variable name,
the range of the domain, and a selected group of output_fuzzy_set. An example of
an output_fuzzy.domain is

output_fuzzy_domain spr spread 0.0 1.0 (small 0.5 3.0 large 0.75 5.0)

fuzzy_rule. A fuzzy rule is of the form “If A then B,” where the antecedent A
is the conjunction of one or more input fuzzy sets, each corresponding to a different
input fuzzy domain, and B is an output fuzzy set corresponding to some output fuzzy
domain. Each fuzzy rule has an associated weight, which is applied when the rule is
invoked. All fuzzy sets contained in a given antecedent are assumed to be chained
together with the “AND” operator. The following example shows a rule with weight
1.0; the rule says that if the input variable “jamming rate” is small and the input
variable “oscillation degree” is large, then the output variable spread should be large:

fuzzy rule 1.0 (jamming rate_domain small oscillation_degree_domain large)
(spread large)

Applying a rule requires evaluating the degree to which its antecedent is true.
First, each input fuzzy set in the antecedent is evaluated by finding the membership
value of the input variable with respect to the input fuzzy set. The membership value

20




of an antecedent is then taken to be the minimum of these values. This mimimum
value is used to compute, for each rule r, two terms X, and Y, as follows, where W,
is the weight of the rule, M, is the (minimum) membership value of the antecedent of
the rule, A, is the area of the consequent fuzzy set of the rule, and C, is the centroid
of the consequent fuzzy set of the rule:

X, = W,M,A,C, (2.3)
Y. =W, M A, . (24)

In the above manner, all fuzzy rules that apply to a given output variable are
evaluated. The value of the output variable is the sum of X, over all rules, divided
by the sum of Y, over all rules, i.e.,

S W.MAC,
Z WerA'r

Note that the fuzzy output is a weighted average of the centroids of the output
fuzzy sets, where the weights are W, M, A,. This formula for the output is the result of
applying a commonly used technique called product-correlation inference, followed by

using the centroid (or center-of-area) method for defuzzification [Kosko 1992; Masters
1993].

fuzzy_output = (2.5)
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3 RTNP SIMULATION
SOFTWARE

The RTNP simulation software was developed by modifying and augmenting the
software already developed in EDMUNDS for simulating STIP3. Both the STIP3
and RTNP software are written in C++, using NAPI+. NAPI4 provides an interface
between the protocol-independent code (called the NAPI+ Environment Module) and
the protocol-dependent code (all the other modules), as shown in Figure 3.1. NAPI+
was developed in the EDMUNDS project and is described in the EDMUNDS Final
Report [Hight et al. 1993].

Instructions for using the RTNP simulation software are given in the Software
User’s Manual [Wong, Ogier, and Khan 1995]. Here we provide only a brief overview
of how this software is used.

The RTNP simulation software reads a number of input files at the initialization
of a simulation. These include the environment file, which specifies protocol and sim-
ulation parameters and options; the script file, which describes the possibly dynamic
network topology; files that contain the neural network parameters; and files that
describe the fuzzy sets and rules used by the HLNC. The Software User’s Manual
provides a description of these files and parameters, and also describes how to train
the neural networks used by RTNP.

The main output of the RTNP simulation software is a log file, which can be
used by a number of analysis tools to provide and plot performance data. These tools
include plot_ete, netviz, p2, and p3, which were developed in EDMUNDS and are
described in [Hight et al. 1993]. Netviz is a graphical network-display tool based on
X Windows.

Two new tools, go.pl and paint.pl, were developed within the RTNP project.
Go.pl is a Perl script developed to facilitate batch processing of large numbers of
RTNP simulations, and paint.pl is another Perl script developed to summarize dif-
ferent simulation results by presenting them on a graphical plot. These tools are
described in the Software User’s manual.
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4 SIMULATION TEST
RESULTS

The Software Test Report [Khan, Ogier, Wong 1995b] describes the tests performed
for RTNP and presents their results. This section presents a summary of those results.
Three types of experiments were conducted: (1) tests evaluating the Neural-Network
Link-State Predictor Module and Gister for predicting link states; (2) tests evaluating
the Neural-Network Queuing Delay Predictor Module; and (3) tests evaluating the
Fuzzy Logic HLNC Module.

4.1 NEURAL-NETWORK AND GISTER LINK-
STATE PREDICTORS

Link-state probability predictions obtained using the Neural-Network Link-State Pre-
dictor Module and a Gister link-state predictor were compared with predictions ob-
tained using the simple STIP3 link-state probability predictor, described in Hight et
al. [1993]. Two types of tests were performed.

4.1.1 Tests on a Single Link

In each of these tests on a ten-node network, all links in the network were jammed
using the same jamming model and jamming parameters. The neural network was
trained and tested on a single link. Three different jamming models (Markov, Nth-
order Markov, and periodic) were used, with three different jamming rates (slow,
medium, fast), for a total of nine tests. ,

The average mean-squared error for the neural-network predictor was about half
that of STIP3 and less than half that of Gister, implying that the neural-network
predictor is much more accurate than the other two methods.

4.1.2 Tests on Multiple Links

In each of these tests on a ten-node network, nine links were jammed using the nine
different jamming models/rates. The neural network was trained and tested on these
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nine links, on three additional links that were not jammed (so that the neural network
can learn to identify an unjammed link), and on the reverse of each of these links (24
links in all).

The average mean-squared error for STIP3 was about 1.6 times that of the nerual
network, implying again that the neural-network predictor is much more accurate than
the STIP3 predictor. (Gister was not tested in this experiment.)

4.2 NEURAL-NETWORK QUEUING DELAY
PREDICTOR MODULE

Queuing delay predictions obtained using this module were compared with those
obtained using the STIP3 queuing delay predictor heuristic. Two types of tests were
performed.

4.2.1 Tests on a Single Destination Queue

In these tests on a ten-node network, queuing delay predictions obtained by the two
methods were compared for one destination queue at one node. Six different traffic
models were used, representing different loads and different degrees of burstiness, and
medium-rate Markov jamming was used on all outgoing links of the queue that was
observed.

The average mean-squared error for STIP3 was about 3.2 times that of the neural
network, implying that the neural network is a much better predictor.

4.2.2 Tests on Multiple Destination Queues

These tests used a network with four nodes and four bidirectional links, forming a
square topology. A single bursty traffic stream was used in which the source and
destination were opposite nodes on the square. The two links going into the single
destination were jammed independently using medium-rate Markov jamming. The
predicted queuing delay (whether obtained using the neural network or STIP3) was
used in the STIP3 routing computation. Queuing delay predictions obtained by the
two methods were compared for the three queues at the three nondestination nodes.
We also compared the end-to-end delay and throughput.

The average mean-squared error for STIP3 (in predicting the queuing delay)
was 3.66 times that of the neural network, again showing that the neural network is
a much better predictor. In addition, the throughput was 55% higher for the neural
network method, while the end-to-end delays for the two methods were about the
same. This shows that the improved queuing delay predictions of the neural network,
when used for making routing decisions, can greatly improve end-to-end performance.
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4.3 FUZZY LOGIC HLNC MODULE

For these tests, the performance of the RTNP protocol, including the Fuzzy Logic
HLNC Module, was compared with the performance of STIP3. Neural networks were
not used in these experiments. Two fuzzy rule bases for the HLNC were tested,
one for controlling the spread parameter and the other for controlling the link_bias
parameter.

4.3.1 Tests for the HLNC that Controls Spread

In these tests the HLNC used a fuzzy rule base that controlled the STIP3 parameter
spread as a function of ete_jamming_amt and ete_jamming_period. Four jamming
scenarios were used: no jamming, slow jamming, medium jamming, and fast jamming.
For each jamming scenario, one test was performed with the HLNC, and three tests
were performed with STIP3, each using a different setting for spread. Average end-
to-end packet delay was measured.

For all jamming models, RTNP with the HLNC performed at least as well as
STIP3 with any of the settings for spread, and for any single setting for spread, there
is at least one jamming model for which RTNP performed significantly better than
STIP3. Therefore, the Fuzzy Logic HLNC Module succeeds in selecting the best value
for the spread parameter for all of the jamming models.

4.3.2 Tests for the HLNC that Controls Link_bias

In these tests the HLNC used a fuzzy rule base that controlled the STIP3 parameter
link_bias as a function of ete_jamming_amt and ete_jamming_period. Four jamming
scenarios were used: no jamming, slow jamming, medium jamming, and fast jamming.
For each jamming scenario, one test was performed with the HLNC, and three tests
were performed with STIP3, each using a different setting for link_bias. Average
end-to-end packet delay was measured.

For all jamming models, RTNP with the HLNC performed at least as well as
STIP3 with any of the settings for link_bias. However, in all jamming models, STIP3
with link_bias set to 0.5 performed as well as RTNP in terms of the average delay.
Thus, in this experiment, the optimal setting for link_bias does not depend on the
jamming period or on whether jamming is present.
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5 CONCLUSIONS

The most significant conclusion to be drawn from the experiments is that our neural
network methods are very effective at predicting link-state probabilities and queuing
delays, and are much more effective than either Gister or STIP3. Moreover, the
superior predicting ability of neural networks can result in dramatically improved
network performance.

The test results for the Fuzzy Logic HLNC Module show that using fuzzy logic
can improve network performance by automatically selecting the best parameter set-
tings. However, the use of fuzzy logic is limited by the ability of the human expert to
find rules for controlling the protocol parameters as a function of network measure-
ments and estimates. It is difficult to find effective rules for even a single scenario. It
is even more difficult to find rules that work for multiple scenarios, since a rule that
works for one scenario may not be effective for another.

An effective rule was found for controlling the spread parameter as a function
of the amount and rate of end-to-end jamming, but we found that the optimal
choice for the link_bias parameter did not depend on the jamming estimates. In
addition, we tried unsuccessfully to find relationships between the STIP3 parame-
ters epstlon, alpha_inc, and short_update_period, and the RTNP environment esti-
mates corr_jam _traffic (which estimates the correlation between jamming and traffic),
congestion, traffic_burstiness, and osc_period (which measures the degree of routing
oscillations). However, our search for such rules was limited, and further research
may result in the discovery of new effective rules. We note that fuzzy logic has been
shown to be useful in some applications.

The application of Gister in network control is limited by its ability to learn, its
complexity, and its requirement that different information sources be independent.
However, since our effort was limited, this does not prove that Gister is ineffective
for network control. We note that Gister has been shown to be useful in other
applications, such as situation assessment.

A feature of neural nets that makes them effective for network control is their
ability to learn from training data, without relying on human expertise which may not
exist. Although we used neural nets only for link-state and queuing delay prediction,
they are also a promising alternative to fuzzy logic in the HLNC. In fact, a hybrid of
fuzzy logic and neural nets can be used. In addition, neural nets may be useful for
estimating, detecting, or recognizing other things such as anomalous routing behavior
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and network intrusions.
Some suggestions for future work are as follows:

e Apply neural nets to HLNC and to recognizing or predicting other adverse
conditions, including network intrusions.

o Apply the ideas of RTNP to other protocols besides STIP3, including ATM

protocols.

o Apply the ideas to specific networks such as multiband multimode radio net-
works.

o Apply the ideas of RTNP to network management.

¢ Consider case-based reasoning, which is another promising AI method, in addi-
tion to neural networks.
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